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Abstract
The transient response of a stationary state of a quantum particle in a step
potential to an instantaneous change in the step height (a simplified model for a
sudden bias switch in an electronic semiconductor device) is solved exactly by
means of a semianalytical expression. The characteristic times for the transient
process up to the new stationary state are identified. A comparison is made
between the exact results and an approximate method.

PACS numbers: 03.65.−w, 42.50.−p

1. Introduction

A stationary scattering wavefunction (in one dimension for simplicity) responds to an abrupt
change in the potential shape by forming a new stationary state for any finite position x. A
physical realization would be an abrupt change in the bias voltage of an electronic device [1, 2].
Obtaining the characteristic time(s) of the transient is clearly of practical interest to determine
the transport properties of small mesoscopic structures, but modelling the process by means
of a grid discretization of space in a ‘finite box’ is far from simple [2]. The problem is that
the boundary conditions at the box edges are not known a priori and involve simultaneous
injection to, and absorption from, the simulation (box) region. Some approximate ways to
deal with the transients have been proposed [1–4] but, surprisingly, no exact solution has been
obtained up until now. Our aim in this paper is to work out an explicit and exact solution of the
transition between stationary monochromatic waves due to an abrupt potential switch. While
the calculation is performed for a step potential that changes the step height suddenly, other
potential profiles, e.g., containing square single or double barriers could be treated similarly.
Our results are in fact applicable to the outer regions of an arbitrary cut-off potential with
different asymptotic levels by inserting the appropriate reflection and transmission amplitudes.
The basic trick to find the exact solution is to implement the action of the evolution operator of
the new Hamiltonian on the initial state using an integral expression in the complex momentum
plane obtained by Hammer et al [5].
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2. Obtaining the exact expression

For a potential step of the form

V (x) = −V0�(x) (1)

where �(x) is the step function and V0 > 0, a stationary state incident from the left has the
form

ψ0(x) = h−1/2

{
eiq0x/h̄ + Rl

0(q0) e−iq0x/h̄ x < 0

T l
0 (q0) eip0x/h̄ x � 0

(2)

where p0 = (
q2

0 +2mV0
)1/2

and q0 are positive, and the reflection and transmission coefficients
for the left incidence are given by

Rl
0(q0) = q0 − p0

q0 + p0
(3)

T l
0(q0) = 2q0

q0 + p0
. (4)

If the potential changes suddenly to

V (x) = −V ′
0�(x) (5)

at time t = 0 the wavefunction will evolve in time. Finding ψ(x, t) is equivalent to solving
separately the time evolution of the initial functions

ψ1(x, t = 0) = h−1/2 eiq0x/h̄�(−x) (6)

ψ2(x, t = 0) = h−1/2 e−iq0x/h̄�(−x) (7)

ψ3(x, t = 0) = h−1/2 eip0x/h̄�(x) (8)

and combining linearly the results with the appropriate coefficients: ψ(x, t) = ψ1(x, t) +
Rl

0ψ2(x, t) + T l
0ψ3(x, t). This follows directly from the linearity of the Schrödinger equation

(a linear combination of solutions is also a solution), and from the fact that at time t = 0 the
above-defined combination satisfies ψ(x, 0) = ψ0(x), see (2).

Of course the initial state could be different, in particular a state incident from the right.
Clearly, to treat any possible initial stationary state we have to consider also a fourth truncated
plane wave:

ψ4(x, t = 0) = h−1/2 e−ip0x/h̄�(x). (9)

Moreover, we should also allow for the possibility of a purely imaginary q0 in ψ2 to describe
the evolution of an initially evanescent wave. We shall now examine the four possible cases.
Note that the evolution of each of these initial states is a realization of Moshinsky’s shutter
problem [6] for the step potential.

2.1. ψ1: initially a positive-momentum cut-off plane wave in x < 0

The momentum representation of ψ1(x, t = 0) is given by

φ1(q, t = 0) = i

2π

1

q − q0 + i0
. (10)
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Following [5], we shall rewrite the eigenstates of the new Hamiltonian,

ψq(x) = h−1/2

{
eiqx/h̄ + Rl(q) e−iqx/h̄ x � 0
eipx/h̄T l(q) x � 0

(11)

in the form

ψq(x) = h−1/2 eiqx/h̄ + R1 (12)

where

R1 = h−1/2

{
Rl e−iqx/h̄ x � 0
T l eipx/h̄ − eiqx/h̄ x � 0

(13)

and

Eq = q2/2m = p2/2m − V ′
0 (14)

q = [p2 − 2mV ′
0]1/2 (15)

p = [q2 + 2mV ′
0]1/2. (16)

The zero of energy is set by convention at the left level, and the amplitudes Rl and T l are
given in appendix A. The square root in the definition of q is chosen with a branch cut in
the p-plane between the branch points p = ±(2mV ′

0)
1/2, whereas p has a branch cut in the

q-plane between q = ±i(2mV ′
0)

1/2. This means in particular that q and p have the same sign
for Eq > 0 and −V ′

0 < Eq . The solution method is based on writing the initial state as

ψ1(x, t = 0) =
∫

C1

dq ψq(x)φ1(q, t = 0) (17)

where C1 goes from −∞ to +∞ above all singularities (branch cut and pole). This is possible
because ∫

C1

dq φ1(q, t = 0)R1 = 0 (18)

as can be seen by closing the integration contour with a large arc in the upper q-plane and
using Cauchy’s theorem. Since ψq is an eigenstate of the Hamiltonian (even for complex q),
the time-dependent wavefunction is given by

ψ1(x, t) =
∫

C1

dq ψq(x)φ(q, t = 0) e−iEqt/h̄. (19)

2.2. ψ2: initially a negative-momentum cut-off plane wave in x < 0, or an evanescent wave

The momentum representation of ψ2(x, t = 0) is given by

φ2(q, t = 0) = i

2π

1

q + q0 + i0
(20)

with the pole again in the lower half q-plane. Following the same procedure used for ψ1 and
using the same R-function decomposition (equations (12) and (13)), the eigenfunctions ψq ,
and the same contour, C2 = C1, one obtains

ψ2(x, t) =
∫

C2

dq ψq(x)φ2(q, t = 0) e−iEq t/h̄. (21)

In the evanescent case, Eq0 < 0 and q0 = i
(
2mV0 −p2

0

)1/2
, the pole lies in the lower imaginary

axis.
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2.3. ψ3: initially a positive-momentum cut-off plane wave in x > 0

The treatment of ψ3(x) is different. The momentum representation of ψ3(x, t = 0) is given by

φ3(p, t = 0) = −i

2π

1

p − p0 − i0
(22)

with a pole in the upper half-plane. We shall use the eigenstates

ψp(x) = h−1/2

{
T r(−p) eiqx/h̄ x � 0

eipx/h̄ + Rr(−p) e−ipx/h̄ x � 0
(23)

where the amplitudes are given in appendix A. Similar to (12) we write

ψp(x) = h−1/2 eipx/h̄ + R3 (24)

with

R3 = h−1/2

{
T r(−p) eiqx/h̄ − eipx/h̄ x � 0
Rr(−p) e−ipx/h̄ x � 0.

(25)

The integral ∫
C3

dp φ3(p, t = 0)R3 = 0 (26)

vanishes for C3 going from −∞ to ∞ passing below the singularities (pole and branch cut).
Note that the contour must now be closed in the lower half-plane to apply Cauchy’s theorem.
Finally,

ψ3(x, t) =
∫

C3

dp φ3(p, t = 0)ψp(x) e−iEq t/h̄. (27)

2.4. ψ4: initially a negative-momentum cut-off plane wave in x > 0

The treatment is essentially the same as for ψ3, but with

φ4(p, t = 0) = −i

2π

1

p + p0 − i0
. (28)

3. Contour deformations

The explicit expressions for ψj (x, t), j = 1, . . . , 4 are given in appendix B. These different
terms contain exponentials of the form exp(±iqx/h̄) or exp(±ipx/h̄) (for terms with support
x � 0 or x � 0, respectively). In each case the integral is better solved in the corresponding
plane, q or p, by contour deformation along the steepest descent path to be described below.
We shall generically use the variable k in both cases. Note that due to the decomposition of the
stationary wavefunctions into three terms (associated with a T-amplitude, an R-amplitude and
an independent term, I, see (11) and (23)) each wavefunction ψj (x, t) may be separated into
three contributions that we shall denote as ψjα , where α = I, T ,R: ψj = ∑

α ψj,α . There are
12 of these terms, each with support in one half-line, and therefore 12 different integrals. We
shall denote as kj the poles in the momentum representation of the initial state ψj (x, t = 0).
They are listed in table 1 together with many other features of the 12 terms.

The 12 terms may be written in the compact form:

ψjα(x) = cjFIjα (29)

Ijα =
∫

Cj

dk e−i(ak2+kbjα)gjα(k) (30)
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Table 1. Features of the terms ψjα .

Term Support −b/2a Pole H-term eiV ′
0 t/h̄ Contour A0 k0 g

ψ1T x > 0 xm/t > 0 q0 − i0 Yes Yes Above T l(q0 − i0) p(q0 − i0)
p

q

T l (p)

q−q0+i0

ψ1I x < 0 xm/t < 0 q0 − i0 No No Above 1 q0 − i0 1
q−q0+i0

ψ1R x < 0 −xm/t > 0 q0 − i0 Yes No Above Rl(q0 − i0) q0 − i0 Rl (q)

q−q0+i0

ψ2T x > 0 xm/t > 0 −q0 − i0 Yes Yes Above T l(−q0 − i0) p(−q0 − i0)
p

q

T l(p)

q+q0+i0

ψ2I x < 0 xm/t < 0 −q0 − i0 No No Above 1 −q0 − i0 1
q+q0+i0

ψ2R x < 0 −xm/t > 0 −q0 − i0 Yes No Above Rl(−q0 − i0) −q0 − i0 Rl(q)

q+q0+i0

ψ3I x > 0 xm/t > 0 p0 + i0 No Yes Below 1 p0 + i0 1
p−p0−i0

ψ3R x > 0 −xm/t < 0 p0 + i0 Yes Yes Below Rr(−p0 − i0) p0 + i0
Rr (−p)

p−p0−i0

ψ3T x < 0 xm/t < 0 p0 + i0 Yes No Below T r(−p0 − i0) q(p0 + i0)
q

p

T r (−p)

p−p0−i0

ψ4I x > 0 xm/t > 0 −p0 + i0 No Yes Below 1 −p0 + i0 1
p+p0−i0

ψ4R x > 0 −xm/t < 0 −p0 + i0 Yes Yes Below Rr(p0 − i0) −p0 + i0 Rr (−p)

p−p0−i0

ψ4T x < 0 xm/t < 0 −p0 + i0 Yes No Below T r(p0 − i0) q(−p0 + i0)
q

p

T r (−p)

p−p0−i0

and vanish outside their support region. In the above expressions c1,2 = i/2πh1/2, c3,4 =
−i/2πh1/2, a = t/(2mh̄),

F = �(x)(eitV ′
0/h̄ − 1) + 1 (31)

and g(k) always has a pole (we shall drop the subscripts j, α unless they are strictly necessary).
Moreover, the R- and T-terms have also a branch-cut singularity. The saddle point of the
exponent is at k = −b/2a (xm/t for I- and T-terms and −xm/t for R-terms) and the steepest
descent path is the straight line Im(k) = −(Re(k) + b/2a). By completing the square,
introducing the new variable u,

u = (k + b/2a)/f f = (1 − i)(mh̄/t)1/2 (32)

which is real on the steepest descent path and zero at the saddle point, and mapping the contour
to the u-plane, the integral takes the form

I = eimx2/h̄t f

∫
Cu

du e−u2
G(u) (33)

where G(u) ≡ g[k(u)]. This function has a simple pole at u0 ≡ (k0 + b/2a)/f and possibly a
branch cut, whereas k0 is given in table 1. It is now useful to separate the pole and branch-cut
contributions explicitly and write G as

G(u) = A0/f

u − u0
+ H(u) (34)

where A0/f is the residue of G(u) at u = u0 and the remainder, H(u), is obtained by
subtraction. Note that H(u) is either an entire function, if there is no branch cut, or its only
singularity is the branch cut.

The integral I is thus separated into two integrals, I = I ′ + I ′′. The first one may
be reduced to a known function by deforming the contour along the steepest descent path
(real-u axis) and taking proper care of the pole contribution,
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I ′ ≡ eimx2/h̄tA0

∫
Cu

du
e−u2

u − u0

=
{

−iπ eimx2/h̄tA0w(−u0) j = 1, 2

iπ eimx2/h̄tA0w(u0) j = 3, 4
(35)

where w(z) = exp(−z2)erfc(−iz). In general the second integral, which involves the
remainder H, has to be evaluated numerically,

I ′′ ≡ eimx2/h̄tf

∫
Cu

du H(u) e−u2
. (36)

However, the computational effort is greatly reduced by deforming the contour also along the
steepest descent path. The branch cut, whenever it is present, cannot be crossed and has to be
surrounded. This occurs for

|mx/t| < (2mV ′
0)

1/2. (37)

Otherwise there is no branch-cut contribution and the integral may be expressed as a series by
expanding H(u) around the origin and integrating term by term,

I ′′ = eimx2/h̄t f π1/2

[
H(u = 0) +

∞∑
n=1

1 × 3 × · · · × (2n − 1)

2n(2n)
H (2n)(u = 0)

]
. (38)

In practice the first term already gives a very good approximation, even if (37) holds. The
I ′′-integrals have to be calculated numerically only for |mx/t| < (2mV ′

0)
1/2 and their relative

importance with respect to w-terms from I ′ is only significant for rather small x at intermediate
times, since as t → ∞, I ′′ → 0 in all cases. A general analytical approximation making
use of I ′ and the first term in I ′′ is given by

ψjα ≈ F eimx2/2h̄t

2h1/2

[
±A0w(∓u0) +

f

π1/2
H(u = 0)

]
(39)

with the upper sign for j = 1, 2 and the lower sign for j = 3, 4, see figure 1. Note the basic
role of the w-functions, which may be considered the elementary transient mode propagators
of the Schrödinger equation [9]. They will show approximate wave fronts when x(u0 = 0)

lies within the domain of the term (i.e., when the saddle meets the pole). This occurs (for
q0 > 0) for the terms 1T, 1R, 2I, 3I, 4T and 4R, see two examples in figure 2.

The long time behaviour may be obtained from the asymptotic (large-z) formula,

w(z) ∼




i

π1/2z
Im z > 0

i

π1/2z
+ 2 e−z2

Im z < 0.

(40)

All ψ2,3 terms vanish as t → ∞ for finite x, since these waves initially move away from the
origin. In spite of this dominant motion, note that there is a transitory and generally small
contribution of ψ2T at positive x and of ψ3T at negative x. In contrast, the w-functions of
ψ1,4 pick up the exponential contribution in (40) which gives the new stationary states. In
particular, as t → ∞ and for finite x,

ψ1(x, t) → e−iEq t/h̄

h1/2

{
eiq0x/h̄ + Rl(q0) e−iq0x/h̄ x < 0
T l(q0) eip′

0x/h̄ x � 0

ψ4(x, t) → e−iEq t/h̄

h1/2

{
T r(p′

0) e−iq0x/h̄ x < 0
e−ip′

0x/h̄ + Rr(p′
0) eip′

0x/h̄ x � 0
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t (fs)

0

0.2

0.4

0.6

|Ψ
|2  (e

V
–1

fs
–1

)

Figure 1. Exact density versus t (solid line), and approximation using (39) (dotted line) for
x = 100 nm. Also shown is the contribution of I ′′ multiplied by a factor of 10 (dashed
line), and the point when the steepest descent path crosses the branch point (triangle). Mass =
0.067me,Eq = 0.3 eV, V0 = 0.3 eV and V ′

0 = 0.8 eV.

0 20 40

x (nm)

0

0.1

0.2

0.3

0.4

|Ψ
ια

|2  (
eV

–1
fs

–1
)

|Ψ1Τ|2

|Ψ2Τ|2

|Ψ3Ι|
2

Figure 2. |ψ1T |2, |ψ2T |2 and |ψ3I |2 versus x at t = 10 fs. Mass = 0.067me,Eq = 0.3 eV, V0 =
0.3 eV and V ′

0 = 0.8 eV. The diamond and circle mark p0t/m and p′
0t/m respectively.

4. Examples

Figure 3 shows a typical wavefunction ‘density’3 versus x at two fixed instants t2 > t1 > 0
for V ′

0 > V0 > 0. For x > 0 the main features are two flat regions representing the old (to the
right) and new (to the left) stationary regimes separated by an oscillating structure. A simple
semiclassical picture provides a good zeroth order explanation: assume a stationary flux of
classical particles in the old potential, with incident momentum q0 and transmitted momentum
p0. After the potential switch at t = 0, the last transmitted particle with momentum p0 will be

3 Because of the scattering normalization of the wavefunctions the ‘densities’ do not have dimensions [1/L], which
would of course be obtained by forming wave packets.
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–100 0 100 200
x (nm)

0

0.3

0.6

|Ψ
|2  (

eV
–1

fs
–1

)

–100 0 100 200
0

0.2

0.4

Figure 3. |ψ |2 versus x for t = 10 fs (upper figure) and t = 50 fs (lower figure). The exact
solution (solid line). The diamond marks p0t/m; the circle p′

0t/m; the square −q0t/m. Mass =
0.067me,Eq = 0.3 eV, V0 = 0.3 eV and V ′

0 = 0.8 eV.

at p0t/m, whereas the first transmitted particle with momentum p′
0 will be at p′

0t/m. Since
p′

0 > p0 there is a region of width (p′
0−p0)t/m where the two types of particles coexist. In the

corresponding quantum scenario one may expect interference and oscillations of wavelength
2πh̄/(p′

0 − p0) in this region, whereas in the regions dominated by only one plane wave the
density does not oscillate and is proportional to the corresponding transmission probability,
either

∣∣T l
0 (q0)

∣∣2
for the ‘old wave’ or |T l(q0)|2 for the ‘new wave’, which in the present case

is smaller than the former, a somewhat surprising feature of quantum scattering of potential
steps from the perspective of classical mechanics. The two critical positions are marked in
the figure with a diamond and a circle. The average local frequency [10, 11] also shows the
transition between the two regimes, see figure 4.

The x < 0 region is clearly divided into ‘old’ (to the left) and ‘new’ regimes where
the incident and reflected components interfere. They also admit a simple analysis: since
the reflected wave stays dominated by momentum −q0, the interference pattern wavelength
stays the same in the new and old regimes, (πh̄/q0), and the only difference is the amplitude
change due to the change of reflection probability from

∣∣Rl
0(q0)

∣∣2
to |Rl(q0)|2. The transition

at x = −q0t/m is marked with a square in figure 3.
In the example shown the dominant terms for x > 0 are ψ3I and ψ1T representing

respectively the ‘old’ and ‘new’ waves. Equation (39) with these two terms only provides
a very good approximation. For x < 0 the dominant terms are ψ1I (incident wave), ψ2I

(old reflected wave) and ψ1R (new reflected wave). Again, the analytical approximation
describes the main features correctly. We may expect a worse performance of the analytical
approximation in processes involving tunnelling or evanescent waves, with the pole lying close
to the branch cut: for example, when Eq < 0, or −V ′

0 > Eq > 0. Some of these processes
and the corresponding time scales have been studied recently in [12] so we shall not insist on
them here.

Figure 5 shows the density for a case in which V0 > V ′
0 > 0. The new wave now moves

at a slower pace than the old one so there is no interference structure between the two.
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V
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Figure 4. h̄ × ωav versus time at x = 100 nm (solid line), where the average local frequency
is defined as ωav ≡ −Im[(dψ/dt)/ψ]. Mass = 0.067me,Eq = 0.3 eV, V0 = 0.3 eV and V ′

0 =
0.8 eV. The diamond and circle indicate xm/p′

0 and xm/p0 respectively. The initial value is
V0 + Eq − V ′

0 (dashed line) whereas the final asymptotic value is Eq (dotted line).

–100 0 100 200
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0

0.2

0.4

|Ψ
|2  (

eV
–1

fs
–1

)

Figure 5. |ψ |2 versus x: mass = 0.067me,Eq = 0.3 eV, V0 = 0.8 eV and V ′
0 = 0.2 eV. The

square is at −q0t/m, the circle at p′
0t/m and the diamond at p0t/m.

5. Comparison with an approximate method

As stated in the introduction, the basic difficulty in dealing with transient phenomena between
stationary scattering states by means of grid methods is that the time-dependent boundary
conditions at the box edges are not known a priori. Several approximate schemes have been
proposed to overcome this difficulty, and our exact solution provides a needed reference to
test their validity and/or range of applicability. We have in particular made a comparison
with a method proposed by Mains and Haddad [1] based on looking a short distance into the
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0 50 100

t (fs)

2.6

2.8

3

3.2

Jx
10

0 
(a

.u
.)

Figure 6. J × 100 at the left box edge, x = −22.48 nm (solid line: exact; short dashed line:
approximation). Mass = 0.042me,Eq = 0.04 eV, V0 = 0.42 eV and V ′

0 = 0.62 eV; box length:
L = 44.96 nm; number of grid points: N = 104; time step: �t = 10−6 fs. The circle is at
t = xm/q0. The two straight lines indicate the values of J × 100 for the initial and final stationary
functions.

simulation domain to determine what is coming out. Especially, at the left edge region the
wave is written as

ψl = A eiq0x/h̄ + B(x, t) e−iq0x/h̄. (41)

Substituting this form in the Schrödinger equation and neglecting the second-order derivative
of B,

ih̄
∂ψl

∂t
≈ q2

0

2m
ψl + i

h̄q0

m

∂B(x, t)

∂x
e−iq0x/h̄. (42)

The first derivative of B is then calculated numerically at each time step with the first two
spatial points, and is used to update the boundary condition for the next time step as

ψ(t + �t)l ≈ ψ(t)l e−iEq0 �t/h̄ +
q0

m

∂B(x, t)

∂x
e−iq0x/h̄�t. (43)

Similarly, the wavefunction at the right edge grid points is written as

ψr = C(x, t) eip′
0x/h̄. (44)

Assuming again that C is linear in x and evaluating its derivative numerically with the two last
grid points the boundary condition at the right is updated as

ψ(t + �t)r ≈ ψ(t)r e−iEq0 �t/h̄ − p′
0

m

∂C(x, t)

∂x
e−ip′

0x/h̄�t. (45)

We have adapted Koonin’s grid method [13] to this boundary-condition scheme and have
calculated the ‘flux’4 versus time at the box edges (figures 6 and 8) and at the centre x = 0
(figure 7) for the same potential jump considered in [1]; the effective mass is taken as m =
0.042 au (for In0.53Ga0.47As–AlAs) and the incident energy corresponds to the Fermi level.
4 The ‘flux’ J(x) is computed with the standard expression h̄

m
Im[ψ(x)∗ dψ(x)/dx]. However, because of the

continuum normalization of the wavefunctions J does not have the dimensions of a current density, which would be
recovered by forming a normalizable wave packet.
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Figure 7. J × 100 at x = 0. Exact (solid line) and for two different box lengths: L =
179.84 nm, N = 80 000,�t = 5 × 10−5 fs (dashed line); and L = 44.96 nm with the same grid
density and �t as in the other box (dots). Mass = 0.042me,Eq = 0.04 eV, V0 = 0.42 eV and V ′

0 =
0.62 eV
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Figure 8. J × 100 at the right box edge, x = 22.48 nm (solid line: exact; short dashed line:
approximation). Mass = 0.042me,Eq = 0.04 eV, V0 = 0.42 eV and V ′

0 = 0.62 eV; box length:
L = 44.96 nm; number of grid points: N = 104; time step: �t = 10−6 fs. The circle is at
xm/p′

0 and the diamond at xm/p0. The two straight lines indicate the values for the initial and
final stationary functions.

The comparison with the exact results demonstrates that the linear ansatz is quite good at
the right edge but fails at the left edge, where the incident and reflected components interfere.
The error introduced at the left edge propagates and eventually affects the entire simulation
domain, in particular the flux at the origin is deformed rapidly with respect to the exact one.
Enlarging the box retards the deviation from the exact result, see figure 7, but the computational
cost becomes exceedingly large to reproduce correctly the whole transient at the origin.
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6. Discussion and conclusions

We have obtained an exact solution of the transition between two stationary scattering states due
to the sudden change in a potential step. Equivalently, we have solved exactly the Moshinsky’s
shutter problem for an arbitrary cut-off plane wave in the step potential. (For other potential
shapes see [14–18].) The explicit expressions obtained for their time evolution would in
fact be directly applicable to an arbitrary cut-off potential with different asymptotic levels by
using the appropriate transmission and reflection amplitudes. (For a recent work on step-like
potentials scattering, see [19, 20].) The exact results allow us to identify characteristic times
for the transients. They also provide a needed reference for testing approximate methods that
model time-dependent open systems (finite systems exchanging particles with the outside) with
injecting and absorbing boundary conditions, such as ultrahigh-speed electronic devices [21].
With the development of novel semiconductor nanostructures, it has become important to carry
out theoretical and experimental studies when an external bias is applied [22–24]. One key
question remaining in these experiments is the analysis of the device transient response to an
instantaneous potential step switching. The characteristic time of the response is of practical
interest to determine the nanostructure transport properties and its possible applications to
novel ultrahigh-speed semiconductor devices.
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Appendix A. Reflection and transmission amplitudes

The reflection and transmission amplitudes in stationary waves with left and right incidences
are given by

Rl(q) = q − p

q + p
T l(q) = 2q

q + p
(A.1)

Rr(p) = p − q

q + p
T r(p) = 2p

q + p

for positive values of the arguments. The analytical continuations for negative arguments are
the amplitudes for the ‘outgoing’ or ‘time-reversed’ stationary states.

Appendix B. Wavefunctions

These are the time-dependent wavefunctions corresponding to the initial conditions given in
(6)–(9) for the potential of (5):

ψ1,2 = i

2π
√

h




∫
Cj

dq
e−iEq t/h̄

q ∓ q0 + i0

(
eiqx/h̄ +

q − p

q + p
e−iqx/h̄

)
x � 0

∫
Cj

dp
2p eipx/h̄ e−iEq t/h̄

(q + p)(q ∓ q0 + i0)
x � 0

(B.1)
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where the minus and plus signs correspond to ψ1 and ψ2 respectively, and

ψ3,4 = −i

2π
√

h




∫
Cj

dq
2q eiqx/h̄e−iEq t/h̄

(q + p)(p ∓ p0 − i0)
x � 0

∫
Cj

dp
e−iEq t/h̄

p ∓ p0 − i0

(
eipx/h̄ +

p − q

q + p
e−ipx/h̄

)
x � 0

(B.2)

with the minus sign for ψ3 and the plus sign for ψ4.
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